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Using Environment Objects As Tools In Unknown Environments

Martin Levihn Henrik Christensen

Abstract— Robots should be able to reason about using
objects in the environment to assist task completion. If faced
with an unexpected situation, such as a critically damaged floor,
robots should be able to evaluate different ways to resolve the
situation rather than directly declaring failure. In this paper,
we present the first online framework that enables robots to
reason about using environment objects as tools to overcome
obstructions, allowing robots to solve previously unsolvable
tasks. The framework utilizes constraint relaxed planning to
detect unavoidable obstructions. In case the robot becomes
disconnected from the goal by an obstruction, the system
guides the robot to search for and utilize an object in the
environment to overcome the obstruction using the concept of
inverse affordances. We verified the framework in a realistic
simulation environment for the PR2 robot.

I. INTRODUCTION

Experienced humans do not hesitate to use their environ-
ments. Robots should not either. Suppose one is trapped
in a room with burning gasoline. The human searches the
environment for something that can be placed over the
gasoline, finds a long enough board, places it over the fire
and escapes. Typically, such situations can not be anticipated
a-priori and no predetermined action plan exists. Rather,
the present situation and objects have to guide the actions
online. Possessing such capabilities becomes essential for
robots that are expected to operate autonomously in complex,
unstructured environments such as disaster areas.

To bring robots closer to such capabilities, this paper
presents the first framework that allows a robot to reason
online about using an object in the environment to facilitate
its task completion. To understand the value of such a
framework, consider the example visualized in Figure 1(a) in
which a robot is tasked with escaping a damaged building.
As typical for such scenarios, we assume that the robot has
access to a map containing the static environment properties,
but has no knowledge about the existence, size or location
of non-static environment objects and no knowledge about
any potential structural damages. Unaware that the floor has
been critically damaged, making the only exit unreachable,
our system starts by computing a motion plan for the robot to
escape the building using the exit. As the robot executes the
motion plan it obtains sensor readings about the environment
and eventually detects the hole in the floor. Similar to existing
systems such as [1], our system re-evaluates the current path
based on this new information and realizes that there is no
alternative path to exit the building. In contrast to existing
work however, our method does not just declare failure and
stop the robot. Instead, it guides the robot to evaluate the
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(a) Initial environment configuration. The robot is not aware of the
location of any non-static environment objects or the hole in the floor,
which prevents the robot from escaping the building.

(b) The robot successfully escapes the building by using a board it found
in the environment to negotiate the hole.

Fig. 1. Example execution of the proposed framework.

environment for ways of overcoming the obstruction. For the
example in Figure 1(a), the robot searches its environment,
finds a long enough board in the room, places it over the hole
and successfully escapes the building. Figure 1(b) visualizes
this successful escape. We are not aware of any other method
that would have enabled the robot to escape this situation.

To achieve such behaviors, we present a framework that
combines constraint relaxed planning [2] with the concept
of inverse affordances, a mapping from a failed action to a
set of object properties required to make the action feasible.
Constraint relaxed planning allows the robot to decide when
an obstruction can not be avoided, and the inverse affordance
mapping allows the robot to determine what properties
(e.g. dimensions) an object needs to have to be helpful in
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overcoming a given obstruction. The robot can then search
the environment for any object with these properties. If
a suitable object is found, the framework computes the
necessary grasp and drop motions and finally guides the robot
to use the object to overcome the obstruction.

This paper focuses on the general concept ideas and
intuitive example implementations as each of the steps in the
framework represent active research areas in itself. However,
we anticipate that the framework presented here will be used
to bring currently disjoint research contributions together
and encourage other researchers to consider the problem
discussed here as a new application domain.

The remainder of the paper is organized as follows:
Section II presents related work and Section III provides
an overview of the proposed framework. After discussing
implementation details in Section IV, the system is evaluated
in Section V. The paper concludes with final remarks in
Section VI.

II. RELATED WORK

The work discussed in this paper allows a robot to make
progress towards a goal even if an obstruction is blocking
its path. This general problem statement has been addressed
before for cases that require the robot to move objects out of
its way to clear a path, in which case the domain is referred
to as Navigation Among Movable Obstacles (NAMO). The
problem discussed in this paper of using environment objects
to overcome an obstruction can be seen as a generalization
of the NAMO concept. We now cover related work in the
NAMO domain as well as in more general robotic tool use.

A. NAMO

Navigation and manipulation planning poses a significant
computational challenge even with complete environment in-
formation. Wilfong [3] first proved that deterministic NAMO
with any number of obstacles is NP-hard. Demaine [4] fur-
ther showed that even the simplified version of this problem,
in which only unit square obstacles are considered, is also
NP-hard.

In [5], Stilman presented a planner that solved a subclass
of NAMO problems termed LP1 where disconnected com-
ponents of free-space could be connected independently by
moving a single obstacle. The planner was able to solve
the hard problems presented in [6]. From an algorithmic
perspective, our framework solves problems similar to the
LP1 NAMO problem classification, as it focuses on scenarios
where each obstruction can be resolved independently using
a single object. However, in contrast to [5], our system rea-
sons about using environment objects rather than just seeing
them as obstacles and does not assume full environment
knowledge.

Wu [7] and Kakiuchi [8] introduced the first extensions
to NAMO in Unknown Environments. In [7] a planner was
presented that could solve NAMO problems with substantial
lack of initial state information. We extended this planner
in [9] to yield locally optimal solutions. [8] presented a
system that executes NAMO in unknown environments on
the humanoid robot HRP-2 with only onboard sensing. While

these systems bring robots closer to making decisions online
about how to overcome obstructions, the NAMO domain
retains the inherent restriction of only allowing a robot to
reason about moving objects out of its way. In contrast, we
argue that a robot should also be abe to reason about actively
using environment objects to create a path in the first place.

B. Tool Use
Most existing forms of robotic object use are focused on
accurate positioning and control of specific tools such as
welding instruments [10], spray guns [11], drills [12] and
surgical instruments [13, 14]. In all of these scenarios the
robot performs a well defined task with the tool. While the
control methods developed for these scenarios are comple-
mentary to the proposed system, we do not assume that the
robot is given a specific task to accomplish with a specific
object. Instead, the robot has to autonomously determine if
and how it needs to use environment objects to accomplish
its overall task.

As an initial step towards this goal, we presented a
system that allowed a HRP-2 robot to autonomously utilize
environment objects to create itself a path in [2]. The robot
used a box to create a stair step for itself and placed a
board on the ground to cross a gap. Similarly, in [15] we
presented a planning system that allowed a robot to reason
about force transmission properties of environment objects.
However, both methods required full a-priori environment
knowledge. In contrast, the framework presented in this paper
is designed for the more realistic case of substantial lack of
knowledge about the initial state and allows the robot to
operate and make decisions using only onboard sensing.

III. OVERVIEW

We now provide an overview of the proposed system before
discussing implementation details in the following section.

A. Assumptions
We assume that the world is static and that the robot has
access to a map containing immobile environment objects
such as walls and stairs. We do not assume that the robot
has a-priori knowledge of any structural differences between
the real world and the map or of the existence or location
of manipulable environment objects prior to any sensing
actions.

The framework focuses on cases in which a single object
can be used to resolve an obstruction. We also assume that
obstructions can be solved independently.

B. Framework
The framework, as visualized in Figure 2, is initialized by
computing a motion plan for the robot from its current
location to the goal configuration. To be able to handle
obstructions, the framework uses constraint relaxed path
planning [2]. In contrast to traditional motion planning
systems, that either return a sound path or no path at all
[16], the constraint relaxed planning system might return a
path that violates robot constraints as it treats obstructions as
soft constraints rather than hard constraints. Consequently, if
no alternative path existed, this planning step could return
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Fig. 2. Flowchart of the proposed framework.

a path that requires the robot to move over a gap. While
such a path would not directly be executable by the robot,
constraint relaxed planning provides two crucial insights.
First, it establishes whether a low cost path to the goal with-
out obstructions exists. Second, if no such paths exists and
obstructions need to be overcome, it provides information to
subsequent planning steps about which obstruction needs to
be cleared. While this property was only utilized to reduce
the search space in [2], the proposed framework explicitly
uses this information to gain insight into the kind of object
the robot needs to search for in order to be able to clear the
obstruction.

To handle the fact that the constraint relaxed planning
step could either output a sound path or a path containing
constraint violations, the proposed framework branches. If
the constraint relaxed planning step finds a path to the goal
without obstructions, the robot is tasked with moving along
the path while continuously sensing the environment for
potential obstructions. In case an obstruction is intersecting
the path, the framework guides the robot to evaluate the
environment for options to overcome the obstruction.

To find helpful objects in the environment, the framework
directly utilizes the output of the constraint relaxed planning
step to determine the necessary properties any suitable object
needs to have. We call this mapping inverse affordance
mapping. While the term affordance is not uniquely defined
in the literature [17, 18], here we refer to affordance as a
mapping from properties of an object (e.g. appearance) to a
set of possible actions for a given agent. Given this defini-
tion, inverse affordance represents the opposite mapping: A
mapping from a set of actions to the properties of an object1.
Figure 3 visualizes this distinction.

Given these object properties, the framework then controls
the robot to search the environment for such an object.
Note that this process stands in contrast to traditional object
recognition problems (e.g. [19]) in which the task is to
find a specific object. Here, the goal is to find any object
that is usable by the robot. If a suitable object is found,

1While a detailed discussion of this concept is outside the scope of this
work, we hope to draw attention to this crucial reasoning process and
anticipate numerous new research concepts.
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Fig. 3. Inverse affordance mapping.

the framework proceeds by guiding the robot to use the
object to overcome the obstruction. Independent of whether
this operation succeeds or fails, the framework loops. This
looping mechanism allows the robot to treat the environment
configuration resulting from the repositioning of an object
as a new problem instance. In turn, this enables the robot
to recover from failure situations in which the usage of an
object did not result in the anticipated outcome (e.g. a gap
is not completely covered).

IV. IMPLEMENTATION

While the previous section provided a general overview of
the proposed framework, we now provide a detailed descrip-
tion of an actual implementation and demonstrate example
outputs. To reiterate, the proposed general framework is
modular and any of the following subsystems can easily be
replaced by more advanced methods. Our specific realization
of the framework described above focuses on cases where
ground obstructions such as holes or oil spills could prevent
the robot from reaching its goal.

The framework requires execution monitoring to ensure
that the robot does not collide with previously unknown
objects and to detect obstructions. We avoid unknown objects
by not allowing the robot to enter any space that it has
not previously scanned and for which the scans do not
indicate free space. Detecting obstructions, such as structural
damages, however, is more challenging. We now detail upon
our specific implementation for detecting holes and oil spills.

A. Detecting Obstructions

To detect crucial ground obstructions, we are utilizing a
head mounted Kinect sensor [20]. To identify liquid ground
obstructions as well as structural damages such as a hole,
our implementation utilizes the fact that these kinds of ob-
struction usually result in a very different ground color than
regular, traversable ground and color threshold the Kinect’s
RGB camera data. This allows us to detect obstructions
in real-time. To not sacrifice 3D information about poten-
tial obstructions by restricting ourselves to vision methods,
we are associating the color information provided by the
Kinect’s RGB camera with the depth information obtained
by the Kinect’s depth sensor. The world coordinates of the
obstruction’s bounding polygon are then directly given by
the 3D information associated with the thresholded pixels.

This process is sufficient for cases where the robot either
observes a complete obstruction or no obstruction at all.
However, if the robot drives towards an obstruction, each



(a) Obstruction detection. The green polygon indicates the detected obstruc-
tion.

(b) Constraint relaxed planning step output. The red portion of the plan
indicates a constraint violation, requiring the robot to resolve the constraint
prior to following this part of the plan.

Fig. 4. Obstruction detection and constraint relaxed planning step examples.

scan could reveal more parts of an obstruction, resulting in
a frequently changing bounding polygon and consequently
many subsequent calls to the path planning system. To
minimize the occurrence of such partial obstruction reports,
our implementation is not reporting detected obstructions to
the planning system until either the obstruction’s dimensions
do not increase anymore, or the robot is getting too close to
the obstruction. Figure 4(a) visualizes an example output of
this obstruction detection method for the scenario shown in
Figure 1.

B. Planning
If the obstruction detection algorithm reports an obstruction
to the planning system, the obstruction is added to the
internal cost map and re-planning is triggered. The planner
performs an A* search over the discretized representation of
the configuration space of the robot but considers collisions
with obstructions as soft constraints rather than hard con-
straints. A heuristic cost penalty is applied for each initial
intersection with an obstruction. The A* search returns a
motion path for the robot as well as a list of obstructions
that have to be resolved to clear the path. This is similar to

previous work in the NAMO domain (e.g. [5, 21, 22]) but
adopted to handle the case of general obstructions rather than
just intersections with movable obstacles. Figure 4(b) shows
the output of the constraint relaxed planning step following
the detection of the hole in Figure 4(a). The output indicates
that the robot has to cross the hole in order to reach the goal.

C. Object Search

If the constraint relaxed planning step indicates that an ob-
struction needs to be resolved for the robot to be able to get to
the goal, the framework continues by abandoning the process
of attempting to reach the goal through pure navigation.
Instead, the robot is now tasked with finding a suitable object
in the environment to overcome the obstruction. For example,
in the scenario visualized in Figure 4, the robot needs to find
an object to help it cross the hole.

As mentioned above, in contrast to most existing research
in object detection, this step does not focus on detecting a
known object, but rather on finding any object that the robot
could utilize to overcome the obstruction. We therefore use
an instance of inverse affordance mapping to base the object
detection algorithm on the output of the constraint relaxed
planning step. Recall that the constraint relaxed planning
step returns the exact obstruction that is currently blocking
the robot. The inverse affordance mapping step now utilizes
this information to determine the minimum dimensions for a
suitable object and uses these dimensions to guide the search.
This represents a specific realization of the general concept
of inverse affordance mapping. For the example visualized
in Figure 4, we need to find an object that has at least the
length of the hole and is at least as wide as the robot base.
The robot needs to explore the environment to find such an
object.

While reasoning about most likely locations of candidate
objects is an interesting research area in itself (e.g. [23,
24]), our implementation takes advantage of simple heuristics
such as on-the spot rotations and wall following to compute
exploration waypoints for the robot that cover the entire
reachable space as defined by the current cost-map2.

The robot now proceeds by navigating to the exploration
waypoints while scanning the environment for candidate
objects using the Kinect’s point cloud data. To detect suitable
objects, we segment the point cloud data into individual
object clusters. This is achieved by using the environment
map to remove the ground plane as well as walls from the
point cloud prior to clustering. Clusters that do not fulfill
the dimensionality requirements, as determined above, are
then rejected. Further, any clusters that are above a size
threshold, indicating that the robot would likely not be able
to manipulate the corresponding object, are rejected. The
remaining clusters are then sorted based on a custom cost
function. We used a scoring function that attempts to capture
the notion of “manipulable” using surface smoothness and
object width. In the order defined by the cost function, the
robot is now tasked with attempting to use the objects to
overcome the current obstruction.

2We do not consider resolving obstructions just to increase the searchable
space for the robot.



(a) Robot detects suitable obstacle.

(b) Robot executes grasping subroutine.

Fig. 5. Constraint resolution example.

Figure 5(a) visualizes an example output of this obstacle
detection method.

D. Grasping and Dropping

If a candidate object has been found, our realization com-
putes a navigation plan to the object. When the robot has
reached the object grasp position, which in our implemen-
tation is determined to be 20cm in front of the cluster, our
implementation computes a detailed motion plan to grasp
the object. We use the cluster information to determine pre-
grasp configurations for the grippers. These configurations
are computed to be 5cm from the edges of the cluster on
each side. Given these pre-grasp configurations, the system
performs a RRT-connect search with smoothing [25] for
each arm individually and moves the grippers into those
configurations. The arms are then controlled to move the
grippers inwards until contact with the object is established.
Upon contact, the grippers are closed and the shoulder joint
of each arm controlled to lift the object from the ground.

If the object is successfully grasped, the algorithm com-
putes a motion plan to guide the robot to the obstruction
and align the robot with the obstruction. The alignment is
determined based on the initial path direction. If the robot
has reached this drop location, the robot executes a drop
motion. We implemented the drop motion as a reversion of
the grasp motion with the addition of a slight motion of the

robot base in the direction of the obstruction. This is done
to ensure that the object falls in the correct direction. If the
drop was successful, the algorithm marks the new location
of the object as traversable space and re-starts the constraint
relaxed planning system. Figure 1(b) shows the behavior of
the robot after the successful drop of the object.

V. EVALUATION

We implemented the proposed framework in simulation on
the PR2 robot using the physics simulator Gazebo as well
as ROS [26]. We performed multiple runs on environments
similar to Figure 1 with varying start locations of the robot
and varying positions of the objects. The accompanying
video demonstrates a complete run of the system.

Prior to running the experiments, we generated a map of
the static environment properties by teleoperating the robot
in the empty environment and running a SLAM algorithm
[27]. For each experiment run, the robot was given access to
the according environment map.

A. Runtime
Obstruction Detection: The obstruction detection sub-

routine took an average of 74ms, allowing the robot to
constantly monitor the ground in front of it.

Planning: The constraint relaxed planning subroutine
took an average of 1.7s if no obstruction was blocking
the goal and an average of 14.6s if all paths to the goal
were blocked by obstructions. We can observe that if no
direct path to the goal existed, this step takes substantially
longer. This is caused by the fact that we used a very
high penalty for initial path intersections with obstruction to
avoid unnecessary environment modifications. Consequently
the planner explored a larger portion of the space before
intersecting obstructions. If no known obstructions were
disconnecting the robot from the goal, the planner could
explore the space more efficiently. This behavior is similar
to what was observed in [2].

Object Search: Evaluating the point clouds for potential
candidate objects to resolve a given obstruction took an
average of 2.72s. In our experiments, the robot needed to
repeat this procedure an average of 43 times at different
exploration poses before finding a suitable object.

Object Grasp and Drop: Planning for object grasp
motions took an average of 1.3s. As the drop motions were
implemented as a reversion of the grasp motion, no planning
was necessary for dropping the objects.

B. Failure Cases
While all our experimental setups were solvable in principle,
we encountered failure cases. First, we encountered task level
failures due to insufficient grasps. As our implementation
computes grasp configurations solely based on the cluster
information and does not reason about force closure or stable
grasp configurations, the object occasionally slipped during
locomotion. Frequently, such slippage caused the object to
fall into a configuration that did not allow the robot to pick
the object up again. If no other object was available in the
environment, the robot was not able to exit the building,
resulting in task level failure.



Second, the drop motion of the object would not always
result in a satisfactory positioning of the object. While, as
discussed above, the framework can handle such cases to
some degree due to the fact that the algorithm loops and the
robot just treats the current environment configuration as a
new problem instance, we encountered cases in which the
object would critically block the hole, again resulting in task
level failure.

We anticipate that future iterations of our implementation
will deploy more sophisticated grasp and drop methods.

VI. CONCLUSION

This paper introduced the first framework that allows robots
to reason online about using the environment to make
progress towards a goal that is not directly reachable. The
framework utilizes constraint relaxed planning to detect
potential obstructions and the novel concept of inverse affor-
dance mapping to determine the object properties necessary
to overcome the obstructions. We presented a complete
implementation of the framework in simulation on the PR2
robot, allowing it to solve previously unsolvable problems.

While this paper presents a crucial first step towards
allowing robots to achieve the intelligent goal-orientated
behavior which is characteristic of human beings, much work
remains to be done. We anticipate that future work based on
the work presented in this paper will extend the framework
to reason about multiple object solutions and allow for more
reliable object grasp and drop planning. In addition, we plan
to extend the framework to support reasoning about infor-
mation gathering actions. A robot typically cannot directly
perceive material properties of an environment object and
therefore should test an object’s applicability to the task
before deciding to use it. For example, a real robot should
test the strength of a board before deciding to use it to cross
a gap.

Nevertheless, the core reasoning methods described in
this work are vital for robots to operate autonomously in
unstructured environments. If in the near future robots are
to replace humans in dangerous search and rescue mis-
sions, assist humans in household environments, work at
construction sides or operate more autonomously over large
distances, robots need to be able to get to their goal by all
means necessary. A robot that is kept from reaching a victim
or critical instruments and tools just because it ignores its
manipulation capabilities during navigation planning, is not
a valuable replacement for a human counterpart.
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